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Protein function prediction is an important but challenging task 
in bioinformatics. The challenge comes from the inherent high 
dimensionality of the input feature space and the cryptic rela-

tionship between sequence and function. The importance is clear 
from the fact that very few proteins in data banks have complete 
or reliable functional annotations. Up to the year 2015, fewer than 
0.1% of proteins deposited in the UniProt database had received 
even one experiment-based functional annotation, and fewer than 
20% of proteins had even been electronically annotated in all three 
domains of gene function as defined by Gene Ontology (GO)1. 
Although recent community-wide efforts have overall pushed 
forward the development of computational prediction methods, 
the accuracy of predicting the vast majority of protein functions 
remains very low2–4. This is not only because of the natural diversity 
of protein function, but also because of the limited number of exist-
ing functionally annotated protein samples. This issue has led to a 
bottleneck in the performance of prediction methods, especially for 
machine learning-based methods5–7, on making accurate predic-
tions based on such small reference or training datasets. Owing to 
the expense of obtaining protein function data experimentally, it is 
highly desirable to develop computational methods that can make 
better use of existing limited data. To that end, here we explore the 
possibility that high-quality synthetic samples can be created to 
augment the existing annotation data and further improve the pre-
dictive accuracy of our prediction models.

Generative adversarial networks (GANs)8–13 are a new type of 
generative model and aim to generate high-quality synthetic sam-
ples by accurately learning the underlying distributions of target 
data samples. The novel aspect of GANs is that they adopt an adver-
sarial training paradigm, where two neural networks ‘fight’ against 
each other to learn the distribution of samples. One network (the 
generator) attempts to generate synthetic data and the other net-
work (the discriminator) attempts to decide whether a given sample 
is real or synthetic. Each network gets better and better at its task 
until an equilibrium is reached, where the generator cannot make 
better samples, and the discriminator cannot detect more synthetic 
samples. GANs have already shown outstanding performance on 

different machine learning tasks in the image processing field, such 
as image to image translation14–16, image segmentation17–19 and image 
reconstruction20–22. In addition to handling image data, GANs have 
also performed well with other types of data, such as gene expres-
sion data and raw gene sequence data. Wang et  al. (2018)23 and 
Dizaji et al. (2018)24 proposed a conditional GAN-based framework 
for the task of gene expression profiles inference by modelling the 
conditional distribution of target genes given the corresponding 
landmark genes’ profiles. Ghahramani et al. (2018)25 also adopted 
the Wasserstein GAN–gradient penalty (WGAN-GP), a variant 
of GANs, to capture the diversity of cell types based on large and 
sparse scRNA-seq data. More recently, Gupta and Zou (2019)26 and 
Wang et al. (2019)27 successfully proposed GAN-based methods to 
generate synthetic genes and promoters, respectively.

The data augmentation task is also an area where GANs show a 
great potential to achieve good performance. Most of the existing 
works on GAN-based data augmentation methods also focus on 
image processing tasks such as image classification28–30. For example, 
Frid-Adar et al. (2018)28 adopted the well-known DCGAN9 method 
to generate synthetic liver lesion images, which successfully improved 
the accuracy of liver lesion classification. Most recently, Marouf et al. 
(2018)31 adopted GANs to generate synthetic scRNA-seq profiles, 
which were used for downstream cell type classification tasks. In this 
work, we propose a new GAN-based data augmentation approach—
FFPred-GAN—which successfully employs GANs to cope with 
protein sequence-based data distributions to tackle the protein 
function prediction problem. The novelties of this approach are 
threefold. First, FFPred-GAN successfully learns the distribution of 
protein amino acid sequence-based biophysical features and gener-
ates high-quality synthetic protein feature samples. Moreover, those 
high-quality synthetic protein feature samples successfully augment 
the original training samples and obtain significantly higher accu-
racy in predicting all three domains of GO terms. FFPred-GAN also 
shows good computational time efficiency, which is valuable when 
dealing with the large amount of sequence data in present data banks. 
These properties also encourage further extension of FFPred-GAN 
in exploiting other types of protein-related features.
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Protein function prediction is a challenging but important task in bioinformatics. Many prediction methods have been devel-
oped, but are still limited by the bottleneck on training sample quantity. Therefore, it is valuable to develop a data augmentation 
method that can generate high-quality synthetic samples to further improve the accuracy of prediction methods. In this work, 
we propose a novel generative adversarial networks-based method, FFPred-GAN, to accurately learn the high-dimensional dis-
tributions of protein sequence-based biophysical features and also generate high-quality synthetic protein feature samples. 
The experimental results suggest that the synthetic protein feature samples are successful in improving the prediction accu-
racy for all three domains of Gene Ontology through augmentation of the original training protein feature samples.
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Results
Overview of FFPred-GAN. In general, the FFPred-GAN frame-
work consists of three steps to generate high-quality synthetic train-
ing protein feature samples, as shown in Fig. 1. First, FFPred-GAN 
adopts the widely used FFPred32 feature extractor to derive protein 
biophysical information based on raw amino acid sequences. For 
each input protein sequence, 258 dimensional features are gener-
ated to describe 13 groups of protein biophysical information, such 
as secondary structure, amino acid composition and presence of 
motifs. FFPred-GAN then adopts the Wasserstein generative adver-
sarial network with gradient penalty (WGAN-GP) approach11 to 
learn the actual high-dimensional distributions of these training 
proteins’ features. The generator of WGAN-GP is used to output the 
synthetic training protein feature samples during different training 
stages of FFPred-GAN. In the last step, FFPred-GAN uses the clas-
sifier two-sample test (CTST)33 to select the optimal synthetic train-
ing protein feature samples, which are used to augment the original 
training samples. During the downstream machine learning clas-
sifier training stage, the optimal synthetic samples are expected to 
derive better classifiers, leading to higher predictive accuracy.

FFPred-GAN successfully generates high-quality synthetic pro-
tein biophysical feature samples. In general, FFPred-GAN suc-
cessfully learns the distributions of the training protein biophysical 
feature samples and generates high-quality synthetic ones. We train 
two FFPred-GAN models for each GO term by using two differ-
ent sets of protein samples with different class labels. The first 
FFPred-GAN model is trained by using the protein samples that are 
annotated with that GO term (hereafter we denote those proteins 
as positive samples). The other FFPred-GAN model is trained by 
using the protein samples that are not annotated by that GO term 
(hereafter we denote those proteins as negative samples). Therefore, 
in total, we train 602 FFPred-GAN models for all 301 GO terms in 
the FFPred-fly library.

We adopt the one-nearest-neighbour classification algorithm 
and leave-one-out cross-validation (LOOCV) to conduct the clas-
sifier two-sample tests, which are used for evaluating the quality of 
synthetic protein feature samples. The closer the value of LOOCV 
accuracy is to 0.500, the higher the quality of the synthetic samples. 
Figure 2a–c shows the LOOCV accuracies obtained for synthetic 

positive and negative protein feature samples (denoted as stars 
and circles, respectively) generated by individual GO term-based 
FFPred-GANs. The x axis denotes the index of each GO term, while 
the y axis denotes the LOOCV accuracy, which ranges from 0.000 
to 1.000. In general, the synthetic positive protein feature samples 
generated by FFPred-GAN for nearly half of the biological pro-
cess (BP), molecular function (MF) and cellular component (CC) 
terms obtained a LOOCV accuracy of 0.500. The average LOOCV 
accuracies for the BP, MF and CC domains of the GO terms are 
0.573, 0.584 and 0.590, respectively. Figure 2d–h displays the t-SNE 
(t-distributed stochastic neighbour embedding) transformed 
two-dimensional (2D) visualization of real and synthetic positive 
protein feature samples that are generated during different train-
ing stages of FFPred-GAN for the BP term GO:0000375. In detail, 
at the beginning of FFPred-GAN training (that is, after the first 
iteration), the real positive protein feature samples (green dots) 
are distributed distantly from the synthetic ones (red dots), lead-
ing to a LOOCV accuracy of 1.000, which suggests obvious differ-
ences between the real and synthetic sets of protein feature samples. 
After 1,000 iterations of further training, FFPred-GAN shows that 
it has started to capture the distribution of the real protein feature 
samples and has generated synthetic ones that are beginning to 
be similar to the real ones; this is seen by the distributions of the 
red and green dots having overlapping areas around the diagonal, 
which gives a better LOOCV accuracy of 0.737. After even further 
training of FFPred-GAN, on the 10,001st iteration, the overlapping 
areas of the two sets of protein samples become broader, giving a 
LOOCV accuracy of 0.645, which also indicates the substantially 
improved training quality of FFPred-GAN. The training quality of 
FFPred-GAN continues to improve with more iterations of train-
ing, with the LOOCV accuracy reaching 0.515 after another 10,000 
iterations. Finally, after 29,601 iterations of training, FFPred-GAN 
has been successfully trained, achieving the desired LOOCV accu-
racy of 0.500. Also, as shown in Fig. 2h, the two sets of protein fea-
ture samples project into almost exactly the same areas. This pattern 
is consistent when training FFPred-GAN for the positive protein 
feature samples for the MF and CC domains of the GO terms. As 
shown in Supplementary Fig. 1a–e and 1f–j, respectively, the qual-
ity of the GO:0000981 and GO:0000785 synthetic positive protein 
feature samples gradually improves with an increasing number of 
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training iterations. The green and red dots for the synthetic posi-
tive protein feature samples of GO:0000981 are distributed similarly 
after 44,201 iterations of training. Analogously, the distributions 
of synthetic positive protein feature samples for GO:0000785 also 

become similar to the corresponding real ones after 31,801 itera-
tions of training, because the LOOCV accuracy reaches 0.500.

Owing to the much higher diversity of negative feature samples, 
in that there are few ways of representing a positive case but many 
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Fig. 2 | The CTST results and 2D visualization of real and synthetic protein feature samples. a–c, LOOCV accuracy of CTST obtained for real and 
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ways of representing a negative case, the accuracy for negative cases 
is lower, as might be expected. The LOOCV accuracies obtained for 
the synthetic negative protein feature samples range between 0.600 
and 0.800 for all three domains of GO terms. The average LOOCV 
accuracies are 0.700, 0.698 and 0.720, respectively, for BP, MF and CC 
domains. Analogously to the cases when training the synthetic posi-
tive protein feature samples, at the beginning of the FFPred-GAN 
training stage (that is, after the first iteration), the real and synthetic 
negative samples for term GO:0007163 are obviously different, 
because the two sets are distributed in different areas in Fig. 2i. After 
1,001 iterations of training, the distributions for both sets begin to 
overlap, but the LOOCV accuracy of 0.930 is still far from optimal. 
After the 10,001st iteration, the overlapping areas of both sets’ dis-
tributions become broader, with an improved LOOCV accuracy of 
0.724. The training quality of FFPred-GAN continues to improve 
even after 50,001 iterations of training, and finally the optimal nega-
tive synthetic protein feature samples are obtained after 97,601 iter-
ations of training, with an optimal LOOCV accuracy of 0.634. As 
shown in Fig. 2m, both green and red dots distribute in similar areas. 
This pattern is consistent when training FFPred-GAN for two other 
domains of GO terms, such as GO:0046872 and GO:0016020. As 
shown in Supplementary Fig. 1o and 1t, the real and synthetic nega-
tive protein feature samples for those two terms distribute in simi-
lar patterns after 52,201 and 49,001 iterations of training, leading to 
optimal LOOCV accuracies of 0.648 and 0.661, respectively.

Synthetic protein feature samples generated by FFPred-GAN 
successfully improve the predictive accuracy of Drosophila func-
tion annotation using FFPred-fly. We evaluated the predictive 
power of using synthetic protein feature samples on the task of pro-
tein function prediction applied to Drosophila. We integrated the 
synthetic and real protein feature samples as the augmented train-
ing protein feature samples in eight different ways, that is, synthetic 
positive + real positive + real negative, synthetic negative + real pos-
itive + real negative, synthetic positive + synthetic negative + real 
positive + real negative, synthetic positive + real negative, synthetic 
negative + real positive, synthetic positive + synthetic negative + real 
positive, synthetic positive + synthetic negative + real negative and 
synthetic positive + synthetic negative. Predictions using all these 
different combinations are compared with each other and with those 
from the original (benchmark) combination, real positive + real 
negative. Three well-known classification methods—support vector 
machine (SVM), k-nearest-neighbour (kNN) and random forests 
(RF) are used to train models for predicting the GO term annota-
tions of test protein samples. Extended Data Figs. 1 and 2 present 
boxplots of distributions of ranks for the 27 individual modelling 
strategies, according to their corresponding Matthews correlation 
coefficient (MCC) and area under receiver operating characteristic 
curve (AUROC) values (Supplementary File 2). Within each box, 
the black line indicates the value of average rank, ranging from 1 
to 27, where a lower rank denotes better predictive performance. 
Information about the average ranks of all 27 individual modelling 
strategies is included in Supplementary Tables 1 and 2.

In general, the synthetic protein feature samples successfully 
improve the predictive performance of the original combination 
of training protein feature samples and lead to the overall highest 
accuracy for predicting all three domains of GO terms with an SVM 
classification algorithm. To predict the BP domain of GO terms, 
the combination of synthetic positive + real positive + real negative 
gives the overall best average ranks of 5.88 and 4.84, respectively, 
according to the MCC and AUROC values, by using SVM as the 
classification algorithm. However, the benchmark combination of 
real positive + real negative with SVM only gives average ranks of 
7.92 and 5.66. Figure 3a,b shows pairwise comparisons of MCC and 
AUROC values obtained by those two types of combination with an 
SVM classifier over each of the 196 BP terms. As shown by green 

dots, 106 and 103 BP terms, respectively, obtain higher MCC and 
AUROC values by using synthetic positive sample augmented train-
ing data. Wilcoxon signed-rank tests also confirm that the synthetic 
positive augmented training samples significantly outperform the 
standard benchmark combination, as evidence by the P values of 
5.86 × 10−3 and 3.12 × 10−2. In addition, the synthetic positive + syn-
thetic negative + real positive + real negative training protein sam-
ples also obtain the second best average rank of 5.95 with SVMs 
according to the MCC values.

Analogously, for predicting MF GO terms, the combination of 
synthetic positive + real positive + real negative also obtains the 
overall best average ranks of 3.82 and 4.40, respectively, accord-
ing to MCC and AUROC values obtained using an SVM classifier, 
whereas the corresponding benchmark combination of training 
protein samples with SVMs only obtains average ranks of 4.60 and 
4.83. Figure 3c,d shows that 37 and 34 MF terms obtain higher 
MCC and AUROC values, respectively. The P value of 3.91 × 10−2 
also suggests that the former obtains significantly higher MCC val-
ues than the latter. The second best-performing combination is also 
synthetic positive + synthetic negative + real positive + real nega-
tive, which obtains the average ranks of 4.13 and 4.81 using an SVM 
classification algorithm.

For predicting CC GO terms, the combination of synthetic 
positive + synthetic negative + real positive + real negative gives the 
overall best average ranks of 4.95 and 4.70, respectively, according 
to MCC and AUROC values. It obtains higher MCC values than the 
benchmark combination of training protein samples when working 
with an SVM, and also higher AUROC values when using RF as the 
classification algorithm. Figure 3e,f shows that 25 CC terms obtain 
higher MCC and AUROC values when using the combination of 
synthetic positive + synthetic negative + real positive + real negative 
as the training samples, respectively, when SVM and RF classifica-
tion algorithms are used. The P value of 5.29 × 10−3 also confirms a 
significant difference between the MCC values obtained by the two 
combinations.

We further evaluated the performance of the FFPred-GAN aug-
mented training samples using a new set of CAFA 3 (3rd Critical 
Assessment of protein Function Annotation)4 targets that do not 
overlap with any protein samples used for training any of the GO 
term-based classifiers. In general, the FFPred-GAN augmented 
training samples lead to higher accuracy in predicting all three 
domains of GO terms. As shown in Fig. 4, to predict BP terms, the 
middle part of the black curve locates above the yellow curve, sug-
gesting a higher Fmax

I
 score of 0.325 obtained by the FFPred-GAN 

augmented training samples than a lower Fmax
I

 score of 0.308 obtained 
by the original training samples. Analogously, the FFPred-GAN 
augmented training samples also obtain a higher Fmax

I
 score of 

0.385 for predicting MF terms, as shown by the middle part of the 
light-blue curve above the orange curve, which leads to a lower Fmax

I
 

score of 0.381 obtained by the original training samples. To predict 
CC terms, the FFPred-GAN augmented training samples obtain 
the highest Fmax

I
 score of 0.629, as shown by the blue curve, which 

locates above the red curve obtained by the original training sam-
ples with a lower Fmax

I
 score of 0.605. We also compare with another 

protein sequence-based prediction method—ProLanGO34—which 
uses recurrent neural networks. The experimental results confirm 
that both FFPred-GAN and FFPred outperform ProLanGO on pre-
dicting all three domains of GO terms.

FFPred-GAN augmented training samples obtain higher predic-
tive accuracy than the training samples augmented by SMOTE. 
We also compared FFPred-GAN with a well-known data augmen-
tation method—the ‘synthetic minority over-sampling technique’ 
(SMOTE)35—which performs over-sampling on the minority class 
by creating synthetic samples between each individual minority 
class sample and their corresponding randomly selected k nearest  
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neighbours. We set the number of over-sampled minority class 
samples for SMOTE to be the same as the number of synthetic sam-
ples generated by FFPred-GAN and use the default values of other 
hyper-parameters implemented in ref. 36. The SVM classifiers are 

trained using the SMOTE augmented training samples to predict all 
three domains of GO terms. In addition, a set of RF classifiers are 
trained to evaluate the AUROC values obtained on predicting the 
cellular component terms.
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protein samples (as indicated on the axes) for predicting three domains of GO terms using SVM (a–e) and RF (f) classification algorithms. The green 
dots indicate those GO terms whose MCC or AUROC values obtained by training samples A (as shown by the y axis) are higher than the ones obtained 
by training samples B (as shown by the x axis); vice versa, the yellow dots indicate those GO terms whose MCC or AUROC values obtained by training 
samples A are lower or equal to the ones obtained by training samples B.
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In general, the FFPred-GAN augmented training samples obtain 
higher predictive accuracy than those augmented by SMOTE for 
predicting all three domains of GO terms. As shown in Extended 
Data Fig. 3a,b, compared with SMOTE, FFPred-GAN obtains higher 
MCC and AUROC values, respectively, when predicting 104 and 
102 BP terms. Wilcoxon signed-rank tests also confirm the signifi-
cant difference between the two methods at a significance level of 
5.00 × 10−2, according to the P values of 2.88 × 10−3 and 2.75 × 10−2. 
Analogously, for predicting MF terms, as shown in Extended Data 
Figs. 3c,d, FFPred-GAN augmented training samples obtain higher 
MCC values than the SMOTE augmented training samples on pre-
dicting 40 out of 68 terms, with a P value of 8.09 × 10−3, while the 
former also show higher AUROC values on 34 out of 68 MF terms. 
To predict CC terms, as shown in Extended Data Fig. 3e,f, the train-
ing samples augmented by FFPred-GAN obtain higher MCC values 
than the SMOTE augmented training samples on predicting 24 out 
of 37 terms, leading to a P value of 3.47 × 10−2, while the former also 
obtain higher AUROC values on predicting 20 out of 37 CC terms 
using the RF classifiers. The Fmax

I
 scores obtained on the CAFA 3 

targets also confirm that the FFPred-GAN augmented training 
samples lead to higher accuracy in predicting all three domains of 
GO terms, as shown in Supplementary Table 3.

We also compared the SMOTE augmented training samples with 
the original training samples. In general, the SMOTE augmented 
training samples obtain only slightly higher predictive accu-
racy on predicting a small proportion of GO terms. As shown in 
Supplementary Fig. 2a, both the green and yellow dots locate on the 
area close to the diagonal, suggesting that the differences in MCC 

values obtained by the two different groups of training samples 
are small. Only 54 out of 196 BP terms receive higher MCC val-
ues using the SMOTE augmented training samples, while 85 out of 
196 BP terms receive the same MCC values using the two different 
groups of training samples (shown by the blue dots). In addition, 
the AUROC values obtained by the two different groups of training 
samples are almost the same, as shown in Supplementary Fig. 2b,  
where almost all dots locate on the diagonal. Those consistent pat-
terns are also observed when predicting MF and CC terms. The 
significance test results further confirm that there is no significant 
difference in the MCC and AUROC values obtained by the two dif-
ferent groups of training samples on predicting all three domains 
of GO terms. The Fmax

I
 scores obtained on the CAFA 3 targets also 

confirm that the SMOTE augmented training samples merely lead 
to slightly higher accuracy on predicting the MF and CC domains 
of GO terms, as shown in Supplementary Table 3.

FFPred-GAN augmented training samples successfully improve 
the predictive accuracy of a state-of-the-art protein function pre-
diction method. We further evaluated the predictive performance 
of the FFPred-GAN augmented training samples (hereafter denoted 
FFPred-GAN) by integrating with the state-of-the-art protein func-
tion prediction method NetGO37, which is an improved version of 
GOLabeler38, the top-ranked method in the recent CAFA 3 compe-
tition. Analogous to GOLabeler, NetGO makes predictions of GO 
terms by using the learning-to-rank approach based on different 
component classifiers trained by multiple data sources, for exam-
ple protein sequence, structure and protein–protein interaction 
network. In terms of the approach to integrate the predictions of 
FFPred-GAN and NetGO, we first back-propagate the predictions 
of all GO terms made by individual methods. For each target, we 
compare the predictive probability of individual GO terms with 
the predictive probabilities of their corresponding ancestors that 
are defined by the ‘is-a’ relationship retained in the GO hierarchy. 
If the predictive probability of that GO term is higher than any of 
its ancestor GO term’s probability, the predictive probability of that 
ancestor GO term will be replaced. We then trained a library of 
logistic regression models for those GO terms receiving predictions 
from both methods simultaneously. For each GO term included in 
the back-propagated predictions, if one target receives predictive 
probabilities from both methods, we adopt the predictive probabili-
ties as features to create a new instance. The value of that instance’s 
label is defined according to the true GO term annotation label set, 
where the labels are also back-propagated according to the GO hier-
archy. A grid search is conducted to optimize the hyper-parameters 
of logistic regression. During the testing stage, we use the library 
of logistic regression models to obtain the predictions for corre-
sponding GO terms, and merge with NetGO’s predictions on those 
GO terms that do not overlap with the GO terms predicted by 
FFPred-GAN. We also integrate the predictions made by the origi-
nal training samples (hereafter denoted FFPred) and NetGO follow-
ing the same approach. We conduct 10-fold cross-validation on the 
new set of CAFA 3 targets to evaluate this integration approach.

In general, the experimental results confirm that the predictions 
made by FFPred-GAN successfully improve the performance of 
NetGO, leading to state-of-the-art accuracy in predicting all three 
domains of GO terms. In Fig. 5a, the blue dot locates in the highest 
position, indicating that the highest Fmax

I
 score of 0.567 is obtained 

by the integration of FFPred-GAN and NetGO on predicting BP 
terms. The second best-performing method is the integration of 
FFPred and NetGO, with an Fmax

I
 score of 0.552, which is also higher 

than the one obtained by NetGO alone (0.536). Analogously, when 
predicting MF terms, the integration of FFPred-GAN and NetGO 
also obtains the highest Fmax

I
 score of 0.750 among all methods, as 

shown in Fig. 5b, where the blue dot locates the highest position. 
The integration of FFPred and NetGO obtained the second-highest 
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samples and ProLanGO in predicting three domains of GO terms for the 
CAFA 3 targets.
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Fmax
I

 score of 0.729, which is higher than the Fmax
I

 score of 0.703 
obtained by NetGO alone. When predicting CC terms, as shown in 
Fig. 5c, the highest Fmax

I
 score of 0.755 is obtained by the integration 

of FFPred-GAN and NetGO. The second best-performing method 
is the integration of FFPred and NetGO (Fmax

I
 of 0.743), which is 

higher than NetGO alone.

Discussion
Overall, as discussed in previous sections, the synthetic samples 
generated by FFPred-GAN successfully improve the predictive 
accuracy from the original training samples. In this section, we 
further explore the reasons for the improvement and the compu-
tational cost of generating optimal synthetic training samples by 
FFPred-GAN.

Augmented training samples induce better SVM decision 
boundaries. The synthetic positive protein feature samples suc-
cessfully improve the accuracy of predicting all three domains of 
GO terms using an SVM classification algorithm. This suggests 
that the augmented training protein feature samples successfully 
derive better SVM decision boundaries. We further analysed the 

changes on the SVM decision boundaries with an example case 
of predicting the term GO:0034613 by using the original train-
ing protein feature samples and the synthetic positive protein 
feature samples augmented training samples, respectively. The 
former leads to an MCC value of 0.073, whereas the latter leads to 
an MCC value of 0.436. We visualize the 2D distributions of both 
protein sets using their first two principal components, which are 
also used for training the SVM classifiers for visualizing the cor-
responding 2D decision boundaries. In Fig. 6a,b, blue dots denote 
the negative protein samples, while red dots denote the positive 
protein samples. The white areas in the background denote the 
decision boundaries separating the blue and red areas where the 
negative and positive protein samples are distributed. It is clear 
that the decision boundaries shown in Fig. 6a and Fig. 6b are dif-
ferent. The ones in Fig. 6a suggest that the SVM trained by the 
original protein samples successfully learned the boundaries that 
separate the protein samples with different labels in the centre of 
the figure. However, as shown in Fig. 6c, the boundaries learned 
by the original training protein sets fail to separate the majority of 
negative and positive testing protein samples distributing in the 
right corner of the figure, where the majority of dots are in red. On 
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BP (a), MF (b) and CC (c) domains of GO terms for the CAFA 3 targets.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell


Articles NATurE MAchInE InTEllIGEncE

the contrary, the SVM trained by the augmented training protein 
feature samples learned those decision boundaries that success-
fully separate the protein samples distributed in the right corner 
of the figure. As shown in Fig. 6d, when applying those decision 
boundaries on the testing protein feature samples, most of the red 
and blue dots in the right corner are successfully distinguished, 
leading to the increased MCC value.

We further explore the reason for the improved predictive 
accuracy obtained by the augmented training samples by investi-
gating the relationship between the synthetic samples and the real 
testing samples. We use the corresponding GANs that derived the 
optimal synthetic samples to generate new sets of synthetic test-
ing samples that are further compared with the corresponding real 
testing samples by conducting the CTST. In general, as shown in 
Supplementary Fig. 3, the vast majority of CTST results (that is, the 
LOOCV accuracy) for individual GO terms range between 0.600 
and 0.800, suggesting that the augmented training samples success-
fully derive improved SVM classifiers that have better generaliza-
tion ability on classification, rather than due to the issue that the 
exact distributions of testing samples were observed during the clas-
sifier training stage, because the encoded distributions of training 
samples by GANs are similar but not identical to the distributions 
of testing samples. This is consistent with the fact that both training 
and testing samples are randomly sampled with a proportion of 7:3 
for individual GO terms.

FFPred-GAN can generate high-quality synthetic feature sam-
ples at reasonable computational cost. We now discuss the com-
putational time cost (that is, the actual running time obtained using 
CPU-based PyTorch with a standard Linux computing cluster) and 
the training sample sizes (that is, the number of training protein 
feature samples) for running FFPred-GAN to generate the optimal 
synthetic protein feature samples for individual GO terms. Extended 
Data Fig. 4a,b presents boxplots of the distributions of computa-
tional time and training samples size, respectively (the complete 
information is provided in Supplementary Table 4). In general, the 
computational time for generating optimal synthetic positive pro-
tein samples for the majority GO terms from all three individual 
domains (shown by blue, golden and green boxes) is less than that 
for generating the optimal negative protein samples (shown by yel-
low, grey and orange boxes). The corresponding median values are 
20,038.6 s (~5.6 h), 24,187.2 s (~6.7 h) and 20,973.8 s (~5.8 h) for 
generating the optimal positive synthetic protein samples for the 
BP, MF and CC domains of GO terms, while the median values 
for generating the optimal negative protein samples are 28,624.6 s 
(~8.0 h), 29,401.6 s (~8.2 h) and 113,777.8 s (~31.6 h), respectively, 
for those three domains of GO terms. This fact is relevant, with a 
pattern such that the training samples sizes of positive proteins for 
the majority of GO terms are smaller than for the negative ones, as 
shown in Extended Data Fig. 4b, where the blue, golden and green 
boxes are located in lower positions than the yellow, grey and orange 

Real negative protein samples

Real positive protein samples

Synthetic positive protein samples

a

c d

b

Fig. 6 | 2D visualizations of the learned SVM decision boundaries. a,b, The decision boundaries (white areas) learned by the original training protein 
feature samples (a) and the synthetic positive protein feature samples augmented training samples (b) for the term GO:0034613. c,d, The distributions of 
corresponding testing protein feature samples with those two types of decision boundaries.
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boxes. Analogously, the corresponding median values of the sample 
sizes for those positive protein samples are 226.0, 234.0 and 238.0, 
respectively, for the BP, MF and CC domains of GO terms, while the 
median values of samples sizes for those negative protein samples 
are 873.0, 875.0 and 1,680.0, respectively.

We then also calculate Pearson’s correlation coefficient between 
the computational time and the training samples sizes, as shown by 
the scatter plots in Extended Data Fig. 4c–h, where the x axes denote 
sample size and the y axes denote computational time. The corre-
lation coefficient values r for positive protein samples are 0.521, 
0.379 and 0.900, respectively, for the BP, MF and CC domains of 
GO terms, while the negative protein samples have correlation coef-
ficient values of 0.321, 0.349 and 0.140, respectively. The positive 
and negative protein samples from all three domains of GO terms 
all show positive correlation between the computational time and 
training samples size. This indicates that larger sample size leads to 
longer training time of FFPred-GAN to obtain the optimal synthetic 
protein samples.

In this work, we have presented a novel generative adversarial 
networks-based method that successfully generates high-quality 
synthetic feature samples, which significantly improve the accuracy 
in predicting all three domains of GO terms through augmenting 
the original training data. Based on this same framework, there is 
significant scope to employ new GANs-based architectures, but, 
more importantly, the same basic approach can be applied to other 
types of feature used in function prediction, such as proteomics 
or gene expression data, which are often difficult or expensive to 
produce in large quantities. Finally, perhaps the most useful benefit 
of using GANs to augment data is that they can offer a powerful 
means to balance training sets in the usual situation of having many 
examples of proteins with one GO term label and very few of others. 
We hope to explore these applications in the future.

Methods
Generating synthetic protein feature samples with WGAN-GP. WGAN-GPs11 
are a type of GAN8 that are well known to be highly capable of learning 
high-dimensional distributions from data samples. In general, conventional GANs 
are composed of two neural networks—the generator G and the discriminator 
(a.k.a. critic) D. The former takes random Gaussian noise (a.k.a. the latent 
variables z ≈ Nð0; 1Þ

I
) as inputs to generate outputs that are considered as the 

synthetic samples. The latter takes the synthetic or real samples as the inputs 
to distinguish whether they are synthetic or not. To train the GANs, those two 
networks play a minimax two-player game; that is, the generator aims to generate 
the synthetic samples as well as possible so as to fool the discriminator, whereas 
the discriminator aims to distinguish the real and synthetic samples as well as 
possible, as shown by equation (1) (the minimax objective). Ideally, the GANs are 
successfully trained when those networks reach the Nash equilibrium; that is, the 
generator is trained to optimally encode the actual distribution of target samples, 
while the discriminator is trained to optimally distinguish the real and synthetic 
samples. Usually, the weights of the generator are updated after several iterations 
of discriminator training. In essence, this process is equivalent to minimizing the 
Jensen–Shannon (JS) or Kullback–Leibler (KL) divergences between the target 
distribution and the one encoded by the generator, given an optimal discriminator.

WGAN10 is a well-known extension of conventional GANs. It adopts 
the earth-mover (Wasserstein) distance to replace the JS or KL divergences 
to avoid the vanishing gradient problem due to their natural limitation on 
handling non-overlapping distributions. In addition, WGAN adopts the weight 
clipping mechanism to enforce the 1–Lipschitz constraint for the critic w.r.t. 
the corresponding inputs. More recently, another extension of GANs has been 
proposed, namely WGAN-GP, which further improves the training stability of 
WGAN by adopting a penalty mechanism on the norm of the gradient of the critic. 
The objective is shown in equation (2), where the left two terms denote the loss of 
the critic and the right term denotes the gradient penalty term (that is, ensuring 
the L2 norm penalty to be around 1.00).

min
G

max
D

E
xPr

½logðDðxÞÞ þ E
~xPg

½logð1� Dð~xÞÞ ð1Þ

E
~xPg

½Dð~xÞ � E
xPr

½DðxÞ þ λ E
x̂Px̂

½ðjj∇x̂Dðx̂Þjj2 � 1Þ2 ð2Þ

In this work, we use the generator of well-trained WGAN-GP models 
to generate synthetic samples. Each WGAN-GP model consists of a 

three-hidden-layer generator and a three-hidden-layer critic. The generator takes 
258 dimensions of random Gaussian noise inputs and outputs 258 dimensions of 
synthetic samples. The ReLU activation function is adopted for all three hidden 
layers (of 512 units each) followed by the output layer, which adopts the tanh 
activation function. The critic network takes 258 dimensions of inputs (that is, 
the real and synthetic protein feature samples) and uses the leaky ReLU activation 
function for all layers including three hidden layers (of 86 units each). The Adam 
optimizer is used for training both generator and critic networks, with a learning 
rate of 1.00 × 10−4. The total number of iterations for training the WGAN-GP is 
100,000, and the weights of the generator networks are updated after every five 
iterations of the critic training. The generated synthetic protein feature samples are 
saved after finishing every 200 iterations of WGAN-GP training for the purpose of 
downstream quality assessment by using the classifier two-sample tests approach33.

Selecting optimal synthetic training protein feature samples with the CTST. 
FFPred-GAN evaluates and selects the optimal synthetic protein feature samples 
by using the CTST33 approach. The optimal synthetic protein feature samples 
are considered as those following the same distribution of the real (training) 
protein feature samples while not being identical to the real (training) ones. The 
CTST approach is an extension of conventional single-variable-based statistical 
significance test methods (for example, the Wilcoxon signed-rank test) to 
high-dimensional cases. More specifically, given two equal-sized sets of samples 
respectively following two distributions P and Q, the CTST considers accepting or 
rejecting a null hypothesis of P being equal to Q. If the null hypothesis is accepted, 
the classification accuracy on predicting the binary labels of held-out samples will 
be near the chance level (that is 50.0%). Therefore, in terms of a metric evaluating 
the quality of generated synthetic samples, a classification accuracy of 100.0% 
means that the synthetic samples are of poor quality due to the fact that the 
synthetic samples are significantly different to the real ones.

In this work, we conduct the CTST by using the one-nearest-neighbour 
classification algorithm due to its simplicity on hyper-parameter tuning. The 
real and generated synthetic protein feature samples are merged as a union set 
of protein feature samples assigned binary labels; for example, label 1 for the real 
samples and label 0 for the synthetic samples. The LOOCV is used to obtain the 
classification accuracy of the CTST by using different synthetic protein feature 
samples during 200 iterations of FFPred-GAN training. Finally, the synthetic 
protein feature samples that obtain the best LOOCV accuracy (that is, closest to 
50.0%) are selected as the optimal synthetic feature samples.

Evaluating the predictive power of synthetic protein feature samples generated 
by FFPred-GAN for augmenting the original training samples. We use the same 
protein sets as discussed in ref. 5, that is, 10,519 Drosophila proteins with 301 GO 
terms. The protein set for each GO term was further split into training and testing 
protein sets in the ratio 7:3. A total of 258 dimensions of protein sequence-derived 
biophysical features (in fact, a mixture of distributions of different feature groups 
ranging from 11 to 50 dimensions) are used to describe the proteins, including 
information about the protein secondary structure, intrinsic disorder regions, 
signal peptides and so on. Full information about these feature groups is provided 
in Supplementary Table 5. The predictive power of the synthetic protein feature 
samples is evaluated by three different classification algorithms: SVM, kNN 
and RF. A fivefold cross-validation-based grid search is used for conducting 
the hyper-parameter optimization for different classification algorithms. 
Detailed information about the hyper-parameter searching space is provided in 
Supplementary Table 6. The classification algorithms and grid search procedure 
are implemented using Scikit-learn39. We also integrate the predictions made by 
FFPred-GAN/FFPred and NetGO (version 1.0) by using logistic regression with 
the optimal hyper-parameters obtained by the grid search according to the average 
precision score. Detailed information about the hyper-parameter searching space 
is provided in Supplementary Table 7. MCC and AUROC are used to evaluate 
the predictive performance of FFPred-GAN. As shown in equation (3), the MCC 
value is calculated by considering the true positive (TP), true negative (TN), false 
positive (FP) and false negative (FN) rates, and ranges from −1 to 1, with a value 
of 0 meaning a random prediction and a value of 1 denoting perfect predictive 
accuracy. The AUROC value is another well-known metric for evaluating the 
accuracy of a binary classification task. It is calculated by considering the TP and 
FP rates obtained using different decision thresholds. The AUROC value ranges 
from 0 to 1, with a value of 0.5 indicating a random prediction and a value of 1.00 
denoting perfect predictive accuracy. The MCC value is given by

MCC ¼ TP ´TN� FP ´ FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p ð3Þ

We further generate a new set of CAFA 3 targets, which also do not overlap with 
any protein samples used for training all individual GO term-based classifiers. We 
first retrieve the latest experimental annotations (identified with evidence codes 
EXP, IDA, IPI, IMP, IGI and IEP) for the CAFA 3 Drosophila melanogaster targets 
from UniProtKB/SwissProt (release 2019_12) and the experimentally validated 
annotations produced by the recent CAFA 3 competition. Those annotated targets 
are then further filtered if they were included in the protein samples used for 
training the GO term-based classifiers, leading to a new set of CAFA 3 targets 
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consisting of 360 proteins in total. To evaluate the performance of the integration 
approach based on the predictions made by FFPred-GAN/FFPred and NetGO, a 
10-fold cross-validation is conducted by using the new set of CAFA 3 targets, that is, 
260, 191 and 231 targets for the BP, MF and CC domains of GO terms, respectively.

The Fmax
I

 score is used to evaluate the performance of the prediction 
methods on this new set of CAFA 3 targets. As shown in equations (4) to (6), 
Fmax
I

 is calculated using Prτ and Rcτ. The former is calculated as the total amount 
of precision values obtained by predicting all S protein sequence GO term 
annotations according to the decision threshold τ, divided by m protein sequences 
with at least one GO term annotation’s predictive posterior probability being 
greater than or equal to the τ. Analogously, the Rcτ value is calculated as the total 
amount of recall values obtained by predicting all S protein sequence GO term 
annotations divided by the total n protein sequences:

Fmax ¼ maxτf
2Prτ ´Rcτ
Prτ þ Rcτ

g ð4Þ

Prτ ¼
1
mτ

Xmτ

s¼1

TPs;τ
TPs;τ þ FPs;τ

ð5Þ

Rcτ ¼
1
n

Xn

s¼1

TPs;τ
TPs;τ þ FNs;τ

ð6Þ

Data availability
All data can be downloaded via http://bioinfadmin.cs.ucl.ac.uk/downloads/
FFPredGAN. 

Code availability
The source code can be accessed via https://github.com/psipred/FFPredGAN.
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Extended Data Fig. 1 | The boxplot about the rankings of MCC values. a-c, The rankings of MCC values obtained by different combinations of synthetic 
and real protein samples and three different classification algorithms for predicting biological process (a), molecular function (b) and cellular component 
(c) domains of protein functions.
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Extended Data Fig. 2 | The boxplot about the rankings of AUROC values. a-c, The rankings of AUROC values obtained by different combinations of 
synthetic and real protein samples and three different classification algorithms for predicting biological process (a), molecular function (b) and cellular 
component (c) domains of protein functions.
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Extended Data Fig. 3 | The comparison of predictive accuracy obtained by the FFPred-GAN augmented training samples and the SMOTE augmented 
training samples. a-f, The scatter-plots about the MCC and AUROC values obtained by the FFPred-GAN augmented training samples and the SMOTE 
augmented training samples for predicting three domains of GO terms by using SVM (a-e) and RF (f) classification algorithms.
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Extended Data Fig. 4 | Characteristics about the computational time and sample size. a, The boxplot about the distributions of computational time on 
obtaining the optimal synthetic protein samples for different GO terms; b, The boxplot about the distributions of sample sizes for different GO terms; c-h, 
The scatter-plots of correlation coefficient values between the computational time and sample sizes for positive and negative protein samples of different 
domains of GO terms.
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